摘要

For a dielectric elastomer, increasing its dielectric constant substantially could lead to a high electric field induced strain under a low operation field. In this work, high dielectric constant nanocomposites were developed by chemically bonding copper phthalocyanine oligomer (CuPc), a high dielectric constant organic semiconductor, to polyurethane (PU). Transmission electron microscope-observed morphologies revealed that the sizes of CuPc particles in a nanocomposite of PU attached with 8.78 vol.% of CuPc were in the range of 10-20 nm, much smaller than the sizes (250-600 nm) in physical blend of PU with the same volume fraction of CuPc. At 100 Hz, the nanocomposite film exhibited a dielectric constant of 391, representing a more than 60 times increase with respect to the neat PU. The enhanced dielectric response in the nanocomposite makes it possible to induce a high electromechanical response. A strain of 17.7% and an elastic energy density of 0.927 J/cm(3) were achieved under an electric field of 10 V/mu m.