Double protein functionalized poly-epsilon-caprolactone surfaces: in depth ToF-SIMS and XPS characterization

作者:Desmet T; Poleunis C; Delcorte A; Dubruel P*
来源:Journal of Materials Science: Materials in Medicine , 2012, 23(2): 293-305.
DOI:10.1007/s10856-011-4527-9

摘要

In biomaterial research, great attention has focussed on the immobilization of biomolecules with the aim to increase cell-adhesive properties of materials. Many different strategies can be applied. In previously published work, our group focussed on the treatment of poly-epsilon-caprolactone (PCL) films by an Ar-plasma, followed by the grafting of 2-aminoethyl methacrylate (AEMA) under UV-irradiation. The functional groups introduced, enabled the subsequent covalent immobilisation of gelatin. The obtained coating was finally applied for the physisorption of fibronectin. The successful PCL surface functionalization was preliminary confirmed using XPS, wettability studies, AFM and SEM. In the present article, we report on an in-depth characterization of the materials developed using ToF-SIMS and XPS analysis. The homogeneous AEMA grafting and the subsequent protein coating steps could be confirmed by both XPS and ToF-SIMS. Using ToF-SIMS, it was possible to demonstrate the presence of polymethacrylates on the surface. From peak deconvoluted XPS results (C- and N-peak), the presence of proteins could be confirmed. Using ToF-SIMS, different positive ions, correlating to specific amino-acids could be identified. Importantly, the gelatin and the fibronectin coatings could be qualitatively distinguished. Interestingly for biomedical applications, ethylene oxide sterilization did not affect the surface chemical composition. This research clearly demonstrates the complementarities of XPS and ToF-SIMS in biomedical surface modification research.

  • 出版日期2012-2