A structural approach in the study of bones: fossil and burnt bones at nanosize scale

作者:Piga Giampaolo*; Dolors Baro Maria; Golvano Escobal Irati; Goncalves David; Makhoul Calil; Amarante Ana; Malgosa Assumpcio; Enzo Stefano; Garroni Sebastiano
来源:Applied Physics A, 2016, 122(12): 1031.
DOI:10.1007/s00339-016-0562-1

摘要

We review the different factors affecting significantly mineral structure and composition of bones. Particularly, it is assessed that micro-nanostructural and chemical properties of skeleton bones change drastically during burning; the micro-and nanostructural changes attending those phases manifest themselves, amongst others, in observable alterations to the bones colour, morphology, microstructure, mechanical strength and crystallinity. Intense changes involving the structure and chemical composition of bones also occur during the fossilization process. Bioapatite material is contaminated by an heavy fluorination process which, on a long-time scale reduces sensibly the volume of the original unit cell, mainly the a-axis of the hexagonal P63/m space group. Moreover, the bioapatite suffers to a varying degree of extent by phase contamination from the nearby environment, to the point that rarely a fluorapatite single phase may be found in fossil bones here examined. TEM images supply precise and localized information, on apatite crystal shape and dimension, and on different processes that occur during thermal processes or fossilization of ancient bone, complementary to that given by X-ray diffraction and Attenuated Total Reflection Infrared spectroscopy. We are presenting a synthesis of XRD, ATR-IR and TEM results on the nanostructure of various modern, burned and palaeontological bones.

  • 出版日期2016-12