摘要

Most Nitinol-alloy-based biomedical devices are usually manufactured from straight drawn microwires or microbeams. Fatigue due to cyclic bending is interpreted as the primary failure mechanism in these devices. However, the bending fatigue performance of a Nitinol microwire is rarely studied because of the lack of test devices. Therefore, we firstly establish a bending fatigue test device based on the self-excited vibration principle. Then, we further improve and experimentally verify the device in three aspects to enlarge the strain amplitude: electrode distance optimization, electrode placement angle optimization and local stiffness enhancement. Based on these improvements, the strain amplitude is increased to 6%, successfully meeting the requirements of Nitinol microwire bending fatigue tests. Using the improved test device, a group of superelastic Nitinol (55.8% Ni-44.2% Ti) microwires with a diameter of 50.8 mu m are tested. The test results show that the fatigue strain limit for the chosen life (1 x 10(6) cycles) is around 1.9%, and the inflexion appears at a strain amplitude of 2.3%. SEM observation shows the typical features of low-cycle and high-cycle fatigue on the fracture surfaces.