摘要

This paper presents a decentralized model predictive control (MPC) scheme for thermal appliances coordination control in smart buildings. The general system structure consists of a set of local MPC controllers and a game-theoretic supervisory control constructed in the framework of discrete-event systems (DES). In this hierarchical control scheme, a set of local controllers work independently to maintain the thermal comfort level in different zones, and a centralized supervisory control is used to coordinate the local controllers according to the power capacity and the current performance. Global optimality is ensured by satisfying the Nash equilibrium at the coordination layer. The validity of the proposed method is assessed by a simulation experiment including two case studies. The results show that the developed control scheme can achieve a significant reduction of the peak power consumption while providing an adequate temperature regulation performance if the system is P-observable.

  • 出版日期2018-8