Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores

作者:De Luca A*; Dhama R; Rashed A R; Coutant C; Ravaine S; Barois P; Infusino M; Strangi G
来源:Applied Physics Letters, 2014, 104(10): 103103.
DOI:10.1063/1.4868105

摘要

We report on the broadband resonant energy transfer processes observed in dye doped gold nanoshells, consisting of spherical particles with a dielectric core (SiO2) covered by a thin gold shell. The silica core has been doped with rhodamine B molecules in order to harness a coherent plasmon-exciton coupling between chromophores and plasmonic shell. This plasmon-exciton interplay depends on the relative spectral position of their bands. Here, we present a simultaneous double strong coupling plasmon-exciton and exciton-plasmon. Indeed, experimental observations reveal of a transmittance enhancement as function of the gain in a wide range of optical wavelengths (about 100 nm), while scattering cross sections remains almost unmodified. These results are accompanied by an overall reduction of chromophore fluorescence lifetimes that are a clear evidence of nonradiative energy transfer processes. The increasing of transmission in the range of 630-750 nm is associated with a striking enhancement of the extinction cross-section in the 510-630 nm spectral region. In this range, the system assumes super-absorbing features. This double behavior, as well as the broadband response of the presented system, represents a promising step to enable a wide range of electromagnetic properties and fascinating applications of plasmonic nanoshells as building blocks for advanced optical materials.

  • 出版日期2014-3-10