摘要

With the aid of hydrodynamic model, a detailed analytical investigation is made of the stimulated Brillouin scattering (SBS) of the Stokes component of the scattered wave in piezoelectric-doped semiconductor plasma subjected to a magnetostatic field. The origin of the SBS process lies in the third-order nonlinear optical susceptibility arising due to the induced nonlinear current density and acoustic perturbations internally generated due to crystal properties such as piezoelectricity and electrostriction. Using the coupled mode theory of plasmas the effective refractive index and absorption coefficient are determined via the effective susceptibility. The influence of piezoelectricity, magnetostatic field and doping concentration has been explored. The analysis has been applied to both noncentrosymmetric and centrosymmetric crystals. Numerical estimates are made for n-type InSb crystal duly irradiated by a frequency doubled 10.6 pm COZ lasers. Results are found to be well in agreement with available literature. The analysis establishes that a large nonlinear refractive index and small absorption coefficient can easily be obtained under moderate excitation intensity in piezoelectric doped magnetized semiconducting crystal, which proves its potential as candidate material for the fabrication of cubic nonlinear devices.

  • 出版日期2008-2