摘要

A non-hydrostatic ocean model using an effective Poisson solver is developed. The Poisson solver is a combination of the multigrid method, the Krylov-subspace method, and the sparse approximate inverse. Its numerical cost only linearly increases with total number of computational cells, and it also has high parallel computing efficiency. The numerical cost of the non-hydrostatic model described in the present paper remains only twice of that of a hydrostatic model, even with non-smooth topography and with a huge number of computational grid cells on massively parallelized computer systems. Therefore, it has a potential to expand the applicability of non-hydrostatic ocean models. We also present the preliminary result of the high-resolution non-hydrostatic experiment on Ice Shelf Water overflow in the southern Weddell Sea, which shows good agreement with observations in terms of the pathway of dense water and velocity field.

  • 出版日期2008