摘要

This work presents a novel experimental apparatus to determine the cutting effectiveness of grinding grits. The apparatus consists of a custom high-speed scratch tester, a force measurement system, and an offline 3D optical profilometer. Preliminary results based on a spherical tool are presented to demonstrate the usefulness of the system. Experiments were performed at depths of cut ranging from 0.3 mu m to 7.5 mu m at cutting speeds of 5 m/s to 30 m/s in 5 m/s increments. High resolution scans of the scratch profiles provided insight into the change in the cutting mechanics as the depth of cut and cutting speed were increased. In general, lower cutting speeds produced higher pile-up heights while higher cutting speeds produced lower pile-up heights. The force measurements indicated that the normal forces increased with cutting speed due to strain rate hardening of the workpiece material while the tangential forces decreased with cutting speed due to a reduction in the coefficient of friction and a change in the cutting mechanics. The force ratio data and the specific energy data both demonstrated high slopes at low depths of cut due to asperity contact between the tool and the workpiece. The modular nature of the developed system allows different grit geometries to be investigated.

  • 出版日期2011-11