摘要

The dynamical behavior of Richtmyer-Meshkov instability-induced turbulent mixing under multiple shock interactions is investigated by large-eddy simulation. After the initial shockwave-interface interaction, the transmitted wave reverberates between the accelerated interface and the end-wall of the shock tube to form a process of multiple shock interactions. The turbulent mixing zone grows in a different manner under each of the impingements. After the initial shock, it grows as a power law of time. After the reshock and the impingement of the reflected rarefaction wave, it grows with time as a different negative exponential law. When the impingement of the reflected compression wave completes, it grows approximately in a linear fashion. The statistical quantities in the turbulent mixing zone evolve with time in a similar way under multiple impingements, and after the impingement of the reflected compression wave, they all decay asymptotically. Therefore, the turbulent mixing zone behaves in a statistically self-similar pattern. Even though the impingements of different waves result in different abrupt changes of the characteristic scale parameters of mixing turbulence, as a whole, the characteristic scales present a feature of growth, and the characteristic-scale Reynolds numbers present a feature of decay. The mixing flow is continuously anisotropic, yet the anisotropy weakens gradually. Therefore the development of turbulent mixing presents a trend of isotropy.