摘要

For 5G, it will be important to leverage the available millimeter wave spectrum. To achieve an approximately omnidirectional coverage with a similar effective antenna aperture compared with the state-of-the-art cellular systems, an antenna array is required at both the mobile and base stations. Due to the large bandwidth, the analog front-end of the receiver with a large number of antennas becomes especially power hungry. Two main solutions exist to reduce the power consumption: Hybrid BeamForming (HBF) and Digital BeamForming (DBF) with low resolution Analog to Digital Converters (ADCs). An HBF system can also be combined with low resolution ADCs. This paper compares the spectral and energy efficiency based on the RF-frontend configuration. A channel with multipath propagation is used. In contrast to previous publication, we take the spatial correlation of the quantization noise into account. We show that the low resolution ADC DBF is robust to small Automatic Gain Control (AGC) imperfections. We showed that in the low SNR regime, the performance of DBF even with 1-2 bit resolution outperforms HBF. If we consider the relationship of spectral and energy efficiency, DBF with 3-5 bit resolution achieves the best ratio of spectral efficiency per power consumption of the RF receiver frontend over a wide SNR range. The power consumption model is based on components reported in the literature.

  • 出版日期2017-9