摘要

Osteoclasts are bone-resorbing cells that play an essential role in maintaining bone homeostasis. Zinc (Zn) has been reported to inhibit osteoclast-mediated bone resorption, but the mechanism of this action has not been clarified. Zn homeostasis is tightly controlled by the coordinated actions of many Zn transporters. The Zn transporter ZIP14/Slc39a14 is involved in various physiological functions; hence, Zip14-knockout (KO) mice exhibit multiple phenotypes. In this study, we thoroughly investigated the bone phenotypes of Zip14-KO mice, demonstrating that the KO mice exhibited osteopenia in both trabecular and cortical bones. In Zip14-KO mice, bone resorption was increased, whereas the bone formation rate was unchanged. Zip14 mRNA was expressed in normal osteoclasts both in vivo and in vitro, but receptor activator of NF-kappa B ligand (RANKL)-induced osteoclastogenesis was not impaired in bone marrow-derived macrophages prepared from Zip14-KO mice. These results suggest that ZIP14 regulates bone homeostasis by inhibiting bore resorption and that in Zip14-KO mice, bone resorption is increased due to the elimination of this inhibitory regulation. Further studies are necessary to conclude whether the enhancement of bone resorption in Zip14-KO mice is due to a cell-autonomous or a non-cell-autonomous osteoclast defect.

  • 出版日期2018-4