摘要

The interaction of one-dimensional excitons and plasmons is theoretically investigated in semiconductor-insulator-metal nanowires. With the exact potentials presented analytically, the excitonic equation of motion in electron-hole-pair representation in real space is established. The optical properties of the system are derived by numerically calculating the evolution of the excitonic wave function. Linear absorption spectra demonstrate strong exciton-plasmon coupling in the nanostructures. The redshifts of the exciton absorption are found to be a result of interaction between the self-image potential and the indirect Coulomb interaction, of which the former brings the blueshift and the latter gives the redshift. The shifts reach the scale of 10 meV, which can be easily observed in experiment. Moreover, how the exciton-plasmon interaction is controlled by the parameters of the structure is also illustrated.