摘要

There is global concern about headwater management and associated impacts on river flow. In many wet temperate zones peatlands can be found covering headwater catchments. In the UK there is major concern about how environmental change, driven by human interventions, has altered the surface cover of headwater blanket peatlands. However, the impact of such land-cover changes on river flow is poorly understood. In particular, there is poor understanding of the impacts of different spatial configurations of bare peat or well-vegetated, restored peat on river flow peaks in upland catchments. In this paper, a physically based, distributed and continuous catchment hydrological model was developed to explore such impacts. The original TOPMODEL, with its process representation being suitable for blanket peat catchments, was utilized as a prototype acting as the basis for the new model. The equations were downscaled from the catchment level to the cell level. The runoff produced by each cell is divided into subsurface flow and saturation-excess overland flow before an overland flow calculation takes place. A new overland flow module with a set of detailed stochastic algorithms representing overland flow routing and re-infiltration mechanisms was created to simulate saturation-excess overland flow movement. The new model was tested in the Trout Beck catchment of the North Pennines of England and found to work well in this catchment. The influence of land cover on surface roughness could be explicitly represented in the model and the model was found to be sensitive to land cover.

  • 出版日期2015-6-30