摘要

This paper tackles the development of distributed control reconfiguration and fault accommodation strategies for consensus achievement in multiagent systems in the presence of faulty agents whose actuators are unable to produce their nominal control efforts. A faulty agent can adversely affect and prevent the team from reaching agreement and lead to catastrophic mission performance degradations. To ensure that the faulty team pursues its consensus objectives, in this paper, on-line distributed control reconfiguration strategies are developed that employ only nearest neighbor information to guarantee the team consensus while minimizing a local cost performance index. Toward the above end, the distributed Hamilton-Jacobi-Bellman equations for the faulty agent are derived and novel reconfigured controllers are designed by solving the above equations subject to the faulty agent dynamics and network structure constraints to ensure fault accommodation of the entire team. Our proposed reconfigurable controllers are applied to a network of autonomous underwater vehicles subject to actuator faults to demonstrate and illustrate the effectiveness and capabilities of our proposed fault recovery control strategies.