摘要

Electrocyclic ring opening (ERO) reaction of 2H-Oxete (oxetene) has been carried out computationally in the gas phase and ring opening barrier has been computed. When comparing the ERO reaction of oxetene with the parent hydrocarbon (cyclobutene), the ring opening of cyclobutene is found to exhibit pericyclic behavior while oxetene shows mild pseudopericyclic nature. Computation of the nucleus-independent chemical shift (NICS) of oxetene adds evidence for pseudopericyclic behavior of oxetene. By locking of lone pair of electrons by hydrogen bonding, it is seen that the pseudopericyclic nature of the ring opening of oxetene is converted into a pericyclic one. CASSCF(5,6)/6-311+ G** computation was carried out to understand the extent of involvement of lone pair of electrons during the course of the reaction. CR-CCSD(T)/6-311+ G** computation was performed to assess the energies of the reactant, transition state and the product more accurately.

  • 出版日期2014-11