摘要

The ability to release the adhered drops on superhydrophobic surfaces is very important for self-cleaning, antifrosting/icing, microfluidic device, and heat transfer applications. In this paper, three types of in situ electrochemical anodizing TiO2 nanostructure films are rationally designed and fabricated on titanium substrates with special superwettability, viz., TiO2 nanotube arrays, irregular TiO2 nanotube arrays, and hierarchical TiO2 particle arrays (HTPA), and their corresponding behavior in condensate microdrop self-propelling (CMDSP) is investigated. Compared to the flat titanium counterpart, all three types of rough TiO2 samples demonstrate a uniform distribution of smaller microscale droplets. Among the treated surfaces, the HTPA possesses the highest condensate density, and more than 80% of the droplets possess a diameter below 10 m. Theoretical analysis indicates that the feature is mainly due to the morphology and structure induced extremely low droplet adhesion on super-antiwetting TiO2 hierarchical surfaces, where the excess surface energy released from the migration leads to the self-propelling of merged microdrop. This work offers a way to rationally construct CMDSP surfaces with excellent self-cleaning, antifrosting/icing ability, and enhanced condensation heat transfer efficiency.