摘要

Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, HuanJing-Hyper Spectral Imager (HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm (NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index (NSSRI) was constructed from continuum-removed reflectance (CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area (NDVI705 < 0.2). The soil adjusted salinity index (SAVI) was applied to predict the soil salt content in the vegetation-covered area (NDVI705 a parts per thousand yen 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping (R (2) = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.