摘要

Superelastic shape memory alloys dissipate significant amount of energy since they recover large transformation strains upon mechanical unloading. Due to their dissipation properties, shape memory alloys can be effectively employed as dampers. Design, simulation, and fabrication of a newly developed superelastic shape memory alloy damper are discussed in this article. To enhance the stroke and dissipation capacity of the proposed damper, a system is implemented which operates more efficiently than a single shape memory alloy wire. Although shape memory alloy wires can only undergo tension, the new system enables the damper to be loaded in both tension and compression. Two damping groups are employed in this mechanism: one of which is activated during tension and the other is activated during compression of the damper. Each damping group consists of two shape memory alloy wires acting in the opposite directions to increase the damping capacity of the system. The mechanical responses of the individual components as well as the assembled damper are simulated. The predicted performance of the damper is then validated through tension/compression tests on the fabricated sample. Numerical and experimental force-displacement curves are also shown to be in a good agreement. The effect of different parameters on damping ratio and dissipated energy of the presented damper is investigated.

  • 出版日期2017-9