摘要

Phorbol esters such as phorbol 12-myristate 13-acetate (PMA) induce apoptosis in many tumor cells including the androgen-sensitive LNCaP prostate cancer cells. Although phorbol ester-induced apoptotic pathways have been well characterized, little is known of the pro-survival pathways modulated by these agents. We now provide experimental evidence to indicate that protein kinase D (PKD) promotes survival signals in LNCaP cells in response to PMA treatment. Knockdown of endogenous PKD1 or PKD2 decreased extracellular signal-regulated kinase (ERK) 1/2 and nuclear factor-kappaB (NF-kappa B)-dependent transcriptional activities and potentiated PMA-induced apoptosis, whereas overexpression of wild-type PKD1 enhanced ERK1/2 activity and suppressed PMA-induced apoptosis. PMA caused rapid activation, followed by progressive downregulation of endogenous PKD1 in a time- and concentration-dependent manner. The downregulation of PKD1 was dependent on the activity of protein kinase C (PKC), but not that of PKD. Selective depletion of endogenous PKC isoforms revealed that both PKC delta and PKC epsilon were required for PKD1 activation and subsequent downregulation. Further analysis showed that the downregulation of PKD1 was mediated by a ubiquitin-proteasome degradation pathway, inhibition of which correlated to increased cell survival. In summary, our data indicate that PKD1 is activated and downregulated by PMA through a PKC-dependent ubiquitin-proteasome degradation pathway, and the activation of PKD1 or PKD2 counteracts PMA-induced apoptosis by promoting downstream ERK1/2 and NF-kappa B activities in LNCaP prostate cancer cells.

  • 出版日期2011-8