摘要

Transposon linker insertion mutagenesis of a full-length infectious clone (IC) (pBIC) of the pathogenic classical swine fever virus (CSFV) strain Brescia was used to identify genetic determinants of CSFV virulence and host range. Here, we characterize a virus mutant, RB-C22v, possessing a 19-residue insertion at the carboxyl terminus of El glycoprotein. Although RB-C22v exhibited normal growth characteristics in primary porcine macrophage cell cultures, the major target cell of CSFV in vivo, it was markedly attenuated in swine. All RB-C22v-infected pigs survived infection remaining clinically normal in contrast to the 100% mortality observed for BICv-infected animals. Comparative pathogenesis studies demonstrated a delay in RB-C22v spread to, and decreased replication in the tonsils, a 10(2) to 10(7) log(10) reduction in virus titers in lymphoid tissues and blood, and an overall delay in generalization of infection relative to BICv. Notably, RB-C22v-infected animals were protected from clinical disease when challenged with pathogenic BICv at 3, 5, 7, and 21 days post-RB-C22v inoculation. Viremia, viral replication in tissues, and oronasal shedding were reduced in animals challenged at 7 and 21 DPI. Notably BICv-specific RNA was not detected in tonsils of challenged animals. These results indicate that a carboxyl-terminal domain of El glycoprotein affects virulence of CSFV in swine, and they demonstrate that mutation of this domain provides the basis for a rationally designed and efficacious live-attenuated CSF vaccine.

  • 出版日期2005-12-5

全文