摘要

In this work, we explore the feasibility of applying the synchronized switch damping on negative capacitor damper to integrally bladed disks (blisks) by comparing its damping performance with that of the friction ring with the same added mass. Both dampers are coupled to the disk of the blisk. Namely, the friction ring is in contact with the underside of the wheel and the piezoelectric materials for synchronized switch damping on negative capacitor are bonded on the disk as well. The lumped parameter models are used for the blisk and dampers, and the multi-harmonic balance method is employed to obtain the steady-state response under engine-order excitations. The vibration-reduction performance of the dampers are compared with respect to the excitation level, the engine order, and multi-mode. This leads to a discussion concerning the parameter design for the synchronized switch damping on negative capacitor damper to achieve a comparable single-mode damping as the friction ring. We show that the synchronized switch damping on negative capacitor damper has a better performance for multiple modes and at a wider range of excitation level. These results indicate that the synchronized switch damping on negative capacitor damping can be a promising solution for the vibration reduction of blisks where the spatial and spectral distributions of the excitation are rich.