摘要

Since the graphitic carbon nitride (g-C4N3), which can be seen as C-doped graphitic-C3N4 (g-C3N4), was reported to display ferromagnetic ground state and intrinsic half-metallicity (Du et al., PRL, 108,197207,2012), it has attracted numerous research interest to tune the electronic structure and magnetic properties of g-C3N4 due to their potential applications in spintronic devices. In this paper, we reported the experimentally achieving of high temperature ferromagnetism in metal-free ultrathin g-C3N4 nanosheets by introducing of B atoms. Further, first-principles calculation results revealed that the current flow in such a system was fully spin-polarized and the magnetic moment was mainly attributed to the p orbital of N atoms in B doped g-C3N4 monolayer, giving the theoretic evidence of the ferromagnetism and half-metallicity. Our finding provided a new perspective for B doped g-C3N4 spintronic devices in future.