摘要

We prove upper bounds on the rate, called "mixing rate", at which the von Neumann entropy of the expected density operator of a given ensemble of states changes under non-local unitary evolution. For an ensemble consisting of two states, with probabilities of p and 1 - p, we prove that the mixing rate is bounded above by 4 root p(1 - p) for any Hamiltonian of norm 1. For a general ensemble of states with probabilities distributed according to a random variable X and individually evolving according to any set of bounded Hamiltonians, we conjecture that the mixing rate is bounded above by a Shannon entropy of a random variable X. For this general case we prove an upper bound that is independent of the dimension of the Hilbert space on which states in the ensemble act.

  • 出版日期2013-11