摘要

This paper deals with a bi-objective flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which all jobs may not be processed by all machines. Furthermore, we consider transportation times between machines. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presents a new multi-objective electromagnetism algorithm (MOEM). The motivation behind this algorithm has risen from the attraction repulsion mechanism of electromagnetic theories. Along with MOEA, we apply simulated annealing to solve the given problem. A set of experimental instances are carried out to evaluate the algorithm by advanced multi-objective performance measures. The related results show that a variant of our proposed MOEM provides sound performance comparing with other algorithms.

  • 出版日期2012-4