摘要

This paper introduces a new model for real gas thermodynamics, with improved accuracy, performance, and robustness compared to state-of-the-art models. It is motivated by the physical insight that in non-premixed flames, as encountered in high pressure liquid propellant rocket engines, mixing takes place chiefly in the hot reaction zone among ideal gases. We developed a new model taking advantage of this: When real fluid behavior only occurs in the cryogenic oxygen stream, this is the only place where a real gas equation of state (EOS) is required. All other species and the thermodynamic mixing can be treated as ideal. Real fluid properties of oxygen are stored in a library; the evaluation of the EOS is moved to a preprocessing step. Thus decoupling the EOS from the runtime performance, the method allows the application of accurate high quality EOS or tabulated data without runtime penalty. It provides fast and robust iteration even near the critical point and in the multiphase coexistence region. The model has been validated and successfully applied to the computation of OD phase change with heat addition, and a supercritical reactive coaxial LOX/GH(2) single injector.

  • 出版日期2016-6