摘要

This paper presents an integrated framework of multi-objective simulation-optimization for optimizing equipment-configurations rations of earthmoving operations. The earthmoving operations are modeled through simulation and the performances associated with equipment-configurations are evaluated in terms of multiple attribute utility reflecting the preference of decision-makers to multiple criteria. A modified two-stage ranking-selection procedure, a statistical method, is equipped to help compare the alternatives that have random performances and thus reduce unnecessary number of simulation replications. In addition, particle swarm optimization is incorporated to search for the potential equipment-configurations to be examined through simulation, thus speeding up the evaluation process and avoiding exhaustive simulation experiments of all the alternatives. The architecture of the integrated framework is developed. A computational example is provided to justify the proposed methodology. The study will provide an alternative means to help plan earthmoving operations by considering multiple criteria and combining multiple methodologies.