An Assessment of SAPHIR Calibration Using Quality Tropical Soundings

作者:Clain G; Brogniez H*; Payne V H; John V O; Luo M
来源:Journal of Atmospheric and Oceanic Technology, 2015, 32(1): 61-78.
DOI:10.1175/JTECH-D-14-00054.1

摘要

The Sondeur Atmospherique du Profil d'Humidite Intertropicale par Radiometrie (SAPHIR) instrument on board the Megha-Tropiques (MT) platform is a cross-track, multichannel microwave humidity sounder with six channels near the 183.31-GHz water vapor absorption line, a maximum scan angle of 42.96 degrees (resulting in a maximum incidence angle of 50.7 degrees), a 1700-km-wide swath, and a footprint resolution of 10 km at nadir. SAPHIR L1A2 brightness temperature (BT) observations have been compared to BTs simulated by the radiative transfer model (RTM) Radiative Transfer for the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (RTTOV-10), using in situ measurements from radiosondes as input. Selected radiosonde humidity observations from the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year (CINDY)-Dynamics of the Madden-Julian Oscillation (DYNAMO) campaign (September 2011-March 2012) were spatiotemporally collocated with MT overpasses. Although several sonde systems were used during the campaign, all of the sites selected for this study used the VaisalaRS92-SGPDsystem and were chosen in order to avoid discrepancies in data quality and biases. To interpret the results of the comparison between the sensor data and the RTM simulations, uncertainties associated with the data processing must be propagated throughout the evaluation. The magnitude of the bias was found to be dependent on the observing channel, increasing from 0.18 K for the 183.31 +/- 0.2-GHz channel to 2.3K for the 183.31 +/- 11-GHz channel. Uncertainties and errors that could impact the BT biases were investigated. These can be linked to the RTM input and design, the radiosonde observations, the chosen methodology of comparison, and the SAPHIR instrument itself.

  • 出版日期2015-1