摘要

High-performance polycrystalline-silicon (poly-Si) nanowire (NW) thin-film transistors (TFTs) are demonstrated using excimer laser crystallization to control the locations of grain boundaries two-dimensionally. Via the locally increased thickness of the amorphous-silicon (a-Si) film as the seeds, the cross-shaped grain boundary structures were produced among these thicker a-Si grids. The NW TFTs with one primary grain boundary perpendicular to the channel direction could be therefore fabricated to achieve an excellent field-effect mobility of 346 cm(2)/V . s and an on/off current ratio of 3 x 10(9). Furthermore, the grain-boundary-location-controlled NW TFTs also exhibited better reliability due to the control of grain boundary locations. This technology is thus promising for applications of low-temperature poly-Si TFTs in system-on-panel and 3-D integrated circuits.

  • 出版日期2012-11