ALBUMIN ACTS LIKE TRANSFORMING GROWTH FACTOR beta(1) IN MICROBUBBLE-BASED DRUG DELIVERY

作者:Chuang Yueh Hsun; Wang Yu Hsin; Chang Tien Kuei; Lin Ching Jung; Li Pai Chi*
来源:Ultrasound in Medicine and Biology, 2014, 40(4): 765-774.
DOI:10.1016/j.ultrasmedbio.2013.10.022

摘要

Unlike lipid-shelled microbubbles (MBs), albumin-shelled microbubbles (MBs) have not been reported to be actively targeted to cells without the assistance of antibodies. Recent studies indicate that the albumin molecule is similar to transforming growth factor beta (TGF-beta) both structurally and functionally. The TGF-beta superfamily is important during early tumor outgrowth, with an elevated TGF-beta being tumor suppressive; at later stages, this switches to malignant conversion and progression, including breast cancer. TGF-beta receptors I and II play crucial roles in both the binding and endocytosis of albumin. However, until now, no specific albumin receptor has been found. On the basis of the above-mentioned information, we hypothesized that non-antibody-conjugated albumin-shelled MBs can be used to deliver drugs to breast cancer cells. We also studied the possible roles of TGF-beta(1) and radiation force in the behavior of cells and albumin-shelled MBs. The results indicate that albumin-shelled MBs loaded with paclitaxel (PTX) induce breast cancer cell apoptosis without the specific targeting produced by an antibody. Applying either an acoustic radiation force or cavitation alone to cells with PTX-loaded albumin MBs increased the apoptosis rate to 23.2% and 26.3% (p < 0.05), respectively. We also found that albumin-shelled MBs can enter MDA-MB-231 breast cancer cells and remain there for at least 24 h, even in the presence of PTX loading. Confocal micrographs revealed that 70.5% of the breast cancer cells took up albumin-shelled MBs spontaneously after 1 d of incubation. Applying an acoustic radiation force further increased the percentage to 91.9% in our experiments. However, this process could be blocked by TGF-beta 1, even with subsequent exposure to the radiation force. From these results, we conclude that TGF-beta 1 receptors are involved in the endocytotic process by which albumin-shelled MBs enter breast cancer cells. The acoustic radiation force increases the contact rate between albumin-shelled MBs and tumor cells. Combining a radiation force and cavitation yields an apoptosis rate of 31.3%. This in vitro study found that non-antibody-conjugated albumin-shelled MBs provide a useful method of drug delivery. Further in vivo studies of the roles of albumin MBs and TGF-beta in different stages of cancer are necessary. (E-mail: paichi@ntu.edu.

  • 出版日期2014-4