摘要

Self-microemulsifying drug delivery systems (SMEDDS) are useful to improve the bioavailability of poorly water-soluble drugs by increasing their apparent solubility through solubilization. However, very few studies, to date, have systematically examined the level of drug apparent solubility in o/w microemulsion formed by self-microemulsifying. In this study, a mixture experimental design was used to simulate the influence of the compositions on simvastatin apparent solubility quantitatively through an empirical model. The reduced cubic polynomial equation successfully modeled the evolution of simvastatin apparent solubility. The results were presented using an analysis of response surface showing a scale of possible simvastatin apparent solubility between 0.0024 similar to 29.0 mg/ mL. Moreover, this technique showed that simvastatin apparent solubility was mainly influenced by microemulsion concentration and, suggested that the drug would precipitate in the gastrointestinal tract due to dilution by gastrointestinal fluids. Furthermore, the model would help us design the formulation to maximize the drug apparent solubility and avoid precipitation of the drug.