摘要

Low carbon gear hobbing is an environmentally friendly way to machine massive workpieces. The appropriate process parameter decision-making is of great significance to improve processing quality, reduce the machining time, production cost, and carbon emission in gear manufacturing. This paper first proposes a support vector machine/ant lion optimizer/gear hobbing (SVM/ALO/GH) integrated approach to do the multi-objective optimization of machining parameters for solving small sample problem of batch production. The first population of process parameters is generated by the multi-class SVM method. Pareto improvement and ALO algorithm are employed to obtain the optimal process parameters. Finally, the case study is presented to give a clear picture of the application of the optimization approach. The results uncover that the proposed SVM/ALO/GH method has better performance than the improved back propagation neural network/differential evolution (IBPNN/DE) algorithm over the small sample problem.

  • 出版日期2017-12
  • 单位机械传动国家重点实验室; 重庆大学