摘要

Aluminum oxide (Al2O3) particles and silicon carbide (SiC) whiskers improved the thermal conductivity of high-density polyethylene (HDPE). To improve the dispersion of inorganic fillers in the matrix, 5 wt% of maleic anhydride-modified polyethylene was added into HDPE as a compatibilizer, and the hybrid matrix was denoted as mHDPE. The thermal conductivity, heat resistance, and tensile properties of resulting HDPE composites were characterized. The results showed that the thermal conductivity reached its maximum value of 0.8876 W/(m K) at 1/4 weight ratio of Al2O3/SiC, which was 110.3, 54.8, and 8.8% higher than that of pure HDPE, mHDPE/Al2O3, and mHDPE/SiC composites, in the order given, indicating that hybrid fillers have synergistic effect on the thermal conductivity of HDPE composites. Moreover, they also have a synergistic effect on the heat resistance and Young's modulus. As the SiC content increases, the heat resistance of the composites increases at first and then falls, and the maximum VST is reached at an Al2O3/SiC weight ratio of 3/2, which is 5.4 degrees C higher than that of HDPE. The maximum Young's modulus of the composites (1160 MPa) is obtained at an Al2O3/SiC weight ratio of 1/4, and the yield strength increases gradually as the SiC whiskers' content increases.