摘要

The temporal and spatial dynamics of AM fungi and glomalin were investigated in Saibei sandland, North China. The soil samples in the rhizosphere of Psammochloa villosa were collected from the three sites (the top-dune, mid-dune, and foot-dune) along one typical dune in June, August, and October 2013 and 2014. The results demonstrated that P. villosa could form symbiotic relationships with AM fungi. The AM fungal status and glomalin significantly differed among the three studied plots and six sampling times. Correlation coefficient analysis revealed that spore density was significantly and positively correlated with soil moisture, soil organic carbon (SOC), available K, and phosphatase activities. Furthermore, the total infection level was significantly and positively correlated with soil edaphic factors. The two glomalin-related soil proteins (total glomalin-related soil proteins and easily extractable glomalin-related soil proteins) were also significantly and positively correlated with soil edaphic factors. The means of total glomalin-related soil proteins (T-GRSP,TG) and easily extractable glomalin-related soil proteins (EE-GRSP,EEG) were 3.03 and 0.68 mg center dot g(-1), respectively. The GRSP levels in Saibei sandland were lower than those in grassland soils, but the GRSP:SOC ratios were higher than those noted in grassland and some desert soils. Thus, the dynamics of AM fungi and glomalin exhibited highly temporal and spatial patterns, which were influenced by soil factors in Saibei sandland. Moreover, AM fungal infections and glomalin may be useful to monitor desertification and soil degradation.