摘要

In this paper, novel adaptive sliding mode dynamic controller with integrator in the loop is proposed for nonholonomic wheeled mobile robot (WMR). The modified kinematics controller is used to generate kinematics velocities of WMR which are subsequently used as the input to adaptive dynamic controller. Actuator dynamics are also derived to generate actuator voltage of WMR through torque and velocity vectors. Stability of both kinematics and dynamic controller is presented using Lyapunov stability analysis. The proposed scheme is verified and validated using computer simulations for tracking the desired trajectory of WMR. The performance of proposed scheme is compared with standard backstepping kinematics controller and classical sliding mode control. In addition, the performance is further compared with standard backstepping kinematics controller with adaptive sliding mode controller without integrator. It is shown that the proposed scheme exhibits zero steady state error, fast error convergence and robustness in the presence of continuous disturbances and uncertainties.

全文