Deterministically Encoding Quantum Information Using 100-Photon Schrodinger Cat States

作者:Vlastakis, Brian*; Kirchmair, Gerhard; Leghtas, Zaki; Nigg, Simon E.; Frunzio, Luigi; Girvin, S. M.; Mirrahimi, Mazyar; Devoret, M. H.; Schoelkopf, R. J.
来源:Science, 2013, 342(6158): 607-610.
DOI:10.1126/science.1243289

摘要

In contrast to a single quantum bit, an oscillator can store multiple excitations and coherences provided one has the ability to generate and manipulate complex multiphoton states. We demonstrate multiphoton control by using a superconducting transmon qubit coupled to a waveguide cavity resonator with a highly ideal off-resonant coupling. This dispersive interaction is much greater than decoherence rates and higher-order nonlinearities to allow simultaneous manipulation of hundreds of photons. With a tool set of conditional qubit-photon logic, we mapped an arbitrary qubit state to a superposition of coherent states, known as a "cat state." We created cat states as large as 111 photons and extended this protocol to create superpositions of up to four coherent states. This control creates a powerful interface between discrete and continuous variable quantum computation and could enable applications in metrology and quantum information processing.

  • 出版日期2013-11-1

全文