Applications of ALD MnO to electrochemical water splitting

作者:Pickrahn Katie L; Gorlin Yelena; Seitz Linsey C; Garg Aaron; Nordlund Dennis; Jaramillo Thomas F; Bent Stacey F*
来源:Physical Chemistry Chemical Physics, 2015, 17(21): 14003-14011.
DOI:10.1039/c5cp00843c

摘要

Atomic layer deposition (ALD) is an attractive method to deposit uniform catalytic films onto high surface area electrodes. One interesting material for ALD synthesis is MnOx, a promising earth-abundant catalyst for the oxygen evolution reaction (OER). It has previously been shown that catalysts beginning as MnO synthesized using ALD on smooth glassy carbon (s-GC) electrodes and Mn2O3 obtained upon annealing MnO on s-GC are active OER catalysts. Here, we use ALD to deposit MnO on high surface area GC (HSA-GC) substrates, forming an active catalyst on a geometric surface area basis. We then characterize three types of catalysts, HSA-GC MnO, s-GC MnO, and annealed MnO (Mn2O3), using cyclic voltammetry (CV), scanning electron microscopy (SEM), and ex situ X-ray absorption spectroscopy (XAS). We show that under OER conditions, all three catalysts oxidize to similar surface states with a mixture of Mn3+/Mn4+ and that MnOx surface area effects can account for the observed differences in the catalytic activity. We also demonstrate the need for a high surface area support for high OER activity on a geometric basis.

  • 出版日期2015