摘要

A general distributed model with a non-steady-state heat exchanger model coupled with a frost model was developed to study the dynamic behavior of an airside heat exchanger in an air-to-water heat pump heater/chiller unit. The effects of water vapor diffusion and uneven fin temperature distribution were considered. The model was found to agree well with reported experimental results. Compared with the routine model, the present model has higher precision of frost layer thickness especially on the fin surface. Results include the propagation of frost formation along the tube and its effect on the dynamic characteristics of refrigerant, air, and tube sides. According to the results, the temperature difference between air and tube surface temperature was proposed to be the main driving force of frosting. Tube surface temperature is the most important factor affecting frosting when there is little variation in air humidity. Frost at the fin base was found to be thicker than that at the fin tip due to the fact that the frost layer grows faster with lower tube surface temperature.

全文