摘要

We hypothesized that the combined blockade of peripheral cholinergic and purinergic receptors alters the baseline breathing pattern and respiratory responses to carotid body stimuli (hypoxia, hyperoxia and hypercapnia). Rat pups at 4 (P4) and 12 days of postnatal age (P12) received an intraperitoneal injection of either saline vehicle or hexamethonium + suramin (Hex, 1 mg kg-1, nicotinic receptor antagonist; Sur, 40 mg kg-1, P2X receptor antagonist; both of which act mainly on peripheral receptors). Compared with the control animals (saline-injected rats), the Hex + Sur-treated rats demonstrated the following features: (1) decreased baseline ventilation and increased frequency of apnoea and breath-by-breath irregularities, with a larger effect in the P4 than in the P12 rats; (2) a decreased peak minute ventilation and respiratory frequency response to hypoxia (fractional inspired oxygen 12%), with a greater effect in the P12 than in the P4 rats; (3) an attenuated decline of the respiratory frequency during hyperoxia (fractional inspired oxygen 50%) to a similar magnitude in rats of both ages; and (4) a decreased hypercapnic ventilatory response (fractional inspired carbon dioxide 5%) to a similar magnitude in rats of both ages. We conclude that the cholinergic nicotinic and purinergic P2X receptors are essential to maintain an adequate baseline pattern in normoxia. They also contribute, albeit not exclusively, to the hypoxic ventilatory response, with an age-specific effect, most probably linked to the cholinergic component, which might partly underlie the postnatal maturation of peripheral chemoreceptors.

  • 出版日期2012-8