摘要

Mechanochemical treatment by high energy ball milling is a promising technology to safely destroy organic pollutants in contaminated soil and allow its possible beneficial reuse. The present study investigates the mechanochemical activation of four major soil components, which induces generation of electrons on particle surfaces. Such phenomenon is demonstrated to occur on oxides by formation of trapped electrons in oxygen vacancies (following a zeroth-order kinetics), as well as on quartz and clayey materials to form fresh electron-rich surfaces by homolytic bond rapture (according to a first-order kinetics). Two toxic organophosphate biocides (i.e. chlorpyrifos and glyphosate) are used as model pollutants. Results show that the aromatic structure of chlorpyrifos determines a faster degradation rate, compared to the aliphatic one of glyphosate, because of the higher stability of generated radical intermediates. Moreover, the aromatic moiety facilitates adsorption on clays, thus temporarily sequestering the molecule and delaying its degradation. The many heteroatoms in both organophosphates have analogous fate: mineralization to inorganic form.