摘要

While the Plio-Quaternary uplift of the Kazdag mountain range (Biga Peninsula, NW Turkey) is generally acknowledged, little is known about its detailed timing. Partly because of this lack of data, the cause of this uplift phase is also debated, being associated either to back-arc extension in the rear of the Hellenic subduction zone, to transpression along the northern edge of the west-moving Anatolian microplate, or to extension driven by gravitational collapse. Here, we perform a morphometric study of the fluvial landscape at the scale of the Biga Peninsula, coupling the recently developed R/S-R analysis of the drainage network with concavity and steepness measures of a set of 29 rivers of all sizes. While the dependence of profile concavity on basin size confirms that the landscape of the peninsula is still in a transient state, the spatial distribution of profile steepness values characterized by higher values for streams flowing down from the Kazdag massif shows that the latter undergoes higher uplift rates than the rest of the peninsula. We obtain a S-R value of 0.324 +/- 0.035 that, according to the relation established by Demoulin (2012), yields an age range of 0.5-1.3 Ma and a most probable value of 0.8 Ma for the time of the last tectonic perturbation in the region. In agreement with the analysis of knickpoint migration in a subset of rivers, this suggests that a pulse of uplift occurred at that time and, corroborated by sparse published observations in the Bayramic and Canakkale depressions, that the peninsula was uplifted as a whole from that time. This uplift pulse might have been caused by transient compressive conditions in the Anatolian plate when the Eratosthenes seamount came to subduct beneath the Cyprus arc around the early-to-mid Pleistocene transition (Schattner, 2010).

  • 出版日期2013-11-26