摘要

The mononuclear nickel(II) complexes with the third-generation quinolone antibacterial agent sparfloxacin in the absence or presence of nitrogen donor heterocyclic ligands (1,10-phenanthroline or 2,2'-bipyridine) have been synthesized and characterized. The experimental data suggest that sparfloxacin acts as deprotonated bidentate ligand coordinated to Ni(II) ion through the ketone and carboxylato oxygens. The crystal structure of (1,10-phenanthroline)bis(sparfloxacinato) nickel(II), 2 has been determined by X-ray crystallography. The cyclic voltammograms of the complexes recorded in dmso solution and in 1/2 dmso/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that in the presence of CT DNA they can bind to CT DNA by the intercalative binding mode. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA and 2 exhibits the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB for the intercalative binding site. The antimicrobial activity of the complexes has been tested on three different microorganisms and has revealed that the inhibition provided by the complexes is slightly decreased in comparison to free sparfloxacin. The complexes exhibit good binding propensity to human and bovine serum albumin proteins having relatively high binding constant values.

  • 出版日期2009-12