摘要

Studies using a variety of experimental tasks have established that when humans repeatedly produce an action, the amount of variability in system output is distributed across a range of time scales or frequencies. A finding of particular interest is that fluctuations in the output of cognitive systems are the highest at the lowest frequencies with fluctuation magnitude (power) systematically declining as frequency increases. Such time-series structure-captured by spectral analysis-is termed pink noise. However, the appearance of pink noise seems to be limited to tasks where action is executed in the absence of external, task-related feedback. In contrast, a few studies have demonstrated that when action was executed in the presence of external, task-related feedback, power was evenly distributed across all spectral frequencies-that is, a white-noise time-series structure was revealed. Here, we sought to determine if the time-series structure of movement amplitude values would change when movement amplitude requirements increased (6.35, 12.70, 25.40, 50.80, and 101.60 mm) under conditions of full visual feedback. Given that increases in movement amplitude requirements are known to induce increased reliance on the available visual feedback, we predicted an amplitude-requirement-induced shift in time-series structure from pink to white noise. Indeed, those results were revealed. Last, the main findings were captured by a computer simulation that was based on established principles of motor control.

  • 出版日期2012-8