摘要

This paper proposes a novel design method to minimize the leakage power during standby mode using a novel adaptive supply voltage and body-bias voltage generating technique for nanoscale VLSI systems. The process, voltage, and temperature (PVT) variations are monitored and controlled independently by their own dedicated systems. The minimum level of V(DD) and the optimum body-bias voltage are generated for different temperature and process conditions adaptively using a lookup table method based on the PVT monitoring and controlling systems. The power supply variations is accurately compensated adaptively through the monitoring circuits based on the propagation delay change of the inverter chains. The subthreshold current as well as gate-tunneling and band-to-band-tunneling currents are monitored and minimized adaptively by the optimally generated body-bias voltage. The proposed design method reduces the leakage power at least by 500 times for ISCAS'85 benchmark circuits designed using 32-nm CMOS technology comparing to the case where the method is not applied.