摘要

ERdj3 was identified as a soluble, lumenal DnaJ family member that binds to unassembled immunoglobulin heavy chains along with the BiP chaperone complex in the endoplasmic reticulum of mammalian cells. Here we demonstrated that ERdj3 binds directly to unfolded substrates. Secondary structure predictions suggested that the substrate binding domain of ERdj3 was likely to closely resemble Yqj1, a yeast cytosolic DnaJ family member, which was previously crystallized with a peptide bound to the C-terminal fragment composed of domains I, II, and III. Mutation of conserved residues in domain 1, which formed the peptide binding site in Ydj1, affected ERdj3's substrate binding ability in mammalian cells and in vitro binding Studies, Somewhat unexpectedly, we found that domain II, which is highly conserved among ERdj3 homologues, but very different from domain II of Ydj1, was also critical for substrate binding. In addition, we demonstrated that ERdj3 forms multimers in cells and found that the conserved carboxy-terminal residue phenylalanine 326 played a critical role in self-assembly. hi vitro binding assays revealed that mutation of this residue to alanine diminished ERdj3's substrate binding ability, arguing that multimerization is important for substrate binding. Together, these studies demonstrate that the Ydj1 structure is conserved in another family member and reveal that among this group of DnaJ proteins domain II, which is not present in the closely related type II family members, also plays an essential role in substrate binding.

  • 出版日期2009-1-13