摘要

This paper revisits the problem of enlarging the domain of attraction of a linear system with multiple inputs subject to actuator saturation by designing a switching anti-windup compensator. The closed loop system consisting of the plant, the controller and the anti-windup compensator is first equivalently formulated as a linear system with input deadzone. We then partition the input space into several regions. In one of these regions, all inputs saturate with the time-derivative of the saturated input being zero. In each of the remaining regions, there is a unique input that does not saturate. The time derivative of the deadzone function associated with the unsaturating input is zero. By utilizing these special properties of the inputs on an existing piecewise Lyapunov function of the augmented state vector containing the deadzone function of inputs, we design a separate anti-windup gain for each region of the input space. The switching from one anti-windup gain to another is activated when the input signals leave one region for another, which can be implemented online since only the measurement of the input signals is required. Simulation results indicate that the proposed approach has the ability to obtain a significantly larger estimate of the domain of attraction than the existing approaches.