Direct numerical simulation of turbulent heat transfer in a fluid-porous domain

作者:Chandesris M*; D'Hueppe A; Mathieu B; Jamet D; Goyeau B
来源:Physics of Fluids, 2013, 25(12): 125110.
DOI:10.1063/1.4851416

摘要

Turbulent heat transfer in a channel partially filled by a porous medium is investigated using a direct numerical simulation of an incompressible flow. The porous medium consists of a three-dimensional Cartesian grid of cubes, which has a relatively high permeability. The energy equation is not solved in the cubes. Three different heating configurations are studied. The simulation is performed for a bulk Reynolds number Re-b = 5500 and a Prandtl number Pr = 0.1. The turbulent flow quantities are compared with the results of Breugem and Boersma ["Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach," Phys. Fluids 17, 025103 (2005)] to validate the numerical approach and macroscopic turbulent quantities are analyzed. Regarding the temperature fields, original results are obtained. The temperature fields show an enhanced turbulent heat transfer just above the porous region compared to the solid top wall, which can be related to the large vortical structures that develop in this region. Furthermore, these large structures induce pressure waves inside the porous domain which are responsible of large temperature fluctuations deep inside the porous region where the flow is laminar. Finally, macroscopic turbulent quantities are computed to get reference results for the development of macroscopic turbulent heat transfer models in fluid-porous domain.

  • 出版日期2013-12
  • 单位中国地震局