摘要

A single degree of freedom self-sustained oscillator is proposed in order to model the lateral oscillations of a pedestrian walking on a periodically moving floor and particularly on a shaking table. In a previous work, the authors have shown that a suitable form for the restoring force of such an oscillator corresponds with a modified hybrid Van der Pol/Rayleigh (MHVR) model, whose associated parameters have been identified in the autonomous (rigid floor) case for a group of twelve pedestrians. %26lt;br%26gt;The MHVR oscillator is analyzed here for the non-autonomous case, where the moving floor is subjected to a harmonic excitation. It has been experimentally proven that in this case the pedestrian may change his (her) natural walking frequency and synchronize with the floor oscillation frequency: one says that the so-called %26quot;frequency entrainment%26quot; occurs. This means that, under certain conditions, the response frequency switches from the natural value to that of the external excitation. This paper discusses the steady %26quot;entrained%26quot; response of the MHVR model subjected to a harmonic excitation, in terms of response amplitude curves obtained using the Harmonic Balance Method. Experimental results available in the literature and involving pedestrians walking on a shaking table are compared with the model predictions for illustrative purposes.

  • 出版日期2013-12