摘要

In liquid combustion, the evaporation process is one of the key parameters which controls combustion efficiency. To understand the combustion process, and to be able to develop an efficient combustor which produces less pollutant, it is necessary to be able to measure evaporation properties. Several techniques exist to measure the physical properties of fuel droplets, but very few exist to measure the thermo-chemical properties. The global rainbow technique (GRT) has been proposed and successfully used to measure the average temperature and the size distribution of sprays under the assumption that all the droplets are at the same temperature. This paper explores the applicability of GRT to sprays where the refractive index is a function of the particle size. A first result proves that the refractive index measured by GRT is weighted by the droplet diameter to the power of 7/3. This result permits accurate and fast comparisons between the numerical simulations and the experiments. A second result is the measurement of the refractive index by the size class by coupling GRT and Phase Doppler Anemometry (PDA) measurements (or another measurement technique with a low sensitivity to the refractive index such as holography, diffractometry, etc).

  • 出版日期2013-1-1