摘要

Background: Oxidative stress and analgesia are connected with different pathological conditions. The drug candidates from synthetic sources are associated with various side effects; therefore, researchers are giving priority to find novel, effective and safe phytomedicines. Teucrium species possesses antioxidant, analgesic, anti-inflammatory and hepatoprotective activities. The essential oils of Teucrium stocksianum have shown strong antinociceptive potential. Our current study is designed to embark total phenolic content (TPC), antioxidant and antinociceptive potential of the methanolic extract of Teucrium stocksianum (METS). Method: Phytochemical composition was determined by using standard methods. Free radical scavenging potential and TPC of METS were assessed by using 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) and Folin-Ciocalteu Reagent (FCR) respectively. Antinociceptive potential was determined by acetic acid induced abdominal writhing, formalin induced paw licking and tail immersion tests. Different test dose 50, 100 and 150 mg/kg body weight of METS were administered intra peritonealy (i.p) to various groups of mice for the evaluation of analgesic potential. Results: Phytochemical screening confirmed the presence of flavonoids, tannins, saponins, anthraquinone, steroid, phlobatannin, terpenoid, glycoside and reducing sugars. METS was found safe at a dose of 1000 mg/kg body weight. A concentration dependent free radical scavenging effect was observed with methanolic aerial parts extract of Teucrium stocksianum (MAPETS) and methanolic roots extracts of Teucrium stocksianum (MRETS). MAPETS and MRETS have shown highest antioxidant activity 91.72% and 86.19% respectively at 100 mu g/ml. MAPETS was found more rich (115.32 mg of GAE/g of dry material) in TPC as compared to MAPETS (105.41 mg of GAE/g). METS demonstrated a dose dependent antinociceptive potential in different pain models, like in acetic acid, formalin and tail immersion showing 83.103%, 80.872% and 67.58% at a dose of 150 mg/kg, similar to acetylsalicylic acid (74.79%, 82.87%, 100 mg/kg) and Tramadol(R) (74%, 30 mg/kg) respectively. Conclusion: Strong antioxidant potential and high TPCs are residing in the methanolic extract of T. stocksianum. METS showed analgesic potential in all models of nociception implying that both peripheral and central pathways of analgesia are involved. This might be due to the presence of various classes of phytochemicals in the plant extract.

  • 出版日期2014-6-3